Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements
نویسندگان
چکیده
On 16 September 2015, a Mw 8.3 interplate thrust earthquake ruptured offshore the Illapel region (Chile). Here, we perform coseismic slip fault modeling based on multi-orbit Sentinel 1-A (S1A) data. To do this, we generate ascending and descending S1A interferograms, whose combination allows us to retrieve the EW and vertical components of deformation. In particular, the EW displacement map highlights a westward displacement of about 210 cm, while the vertical map shows an uplift of about 25 cm along the coast, surrounded by a subsidence of about 20 cm. Following this analysis, we jointly invert the multi-orbit S1A interferograms by using an analytical approach to search for the coseismic fault parameters and related slip values. Most of the slip occurs northwest of the epicenter, with a maximum located in the shallowest 20 km. Finally, we refine our modeling approach by exploiting the Finite Element method, which allows us to take geological and structural complexities into account to simulate the slip along the slab curvature, the von Mises stress distribution, and the principal stress axes orientation. The von Mises stress distribution shows a close similarity to the depth distribution of the aftershock hypocenters. Likewise, the maximum principal stress orientation highlights a compressive regime in correspondence of the deeper portion of the slab and an extensional regime at its shallower segment; these findings are supported by seismological data.
منابع مشابه
Continent-Wide 2-D Co-Seismic Deformation of the 2015 Mw 8.3 Illapel, Chile Earthquake Derived from Sentinel-1A Data: Correction of Azimuth Co-Registration Error
In this study, we mapped the co-seismic deformation of the 2015 Mw 8.3 Illapel, Chile earthquake with multiple Sentinel-1A TOPS data frames from both ascending and descending geometries. To meet the requirement of very high co-registration precision, an improved spectral diversity method was proposed to correct the co-registration slope error in the azimuth direction induced by multiple Sentine...
متن کاملSlip segmentation and slow rupture to the trench during the 2015, Mw8.3 Illapel, Chile earthquake
The 2015 Mw8.3 Illapel, Chile earthquake is the latest megathrust event on the central segment of that subduction zone. It generated strong ground motions and a large (up to 11m runup) tsunami which prompted the evacuation of more than 1 million people in the first hours following the event. Observations during recent earthquakes suggest that these phenomena can be associated with rupture on di...
متن کاملRetrieving three-dimensional coseismic displacements of the 2008 Gaize, Tibet earthquake from multi-path interferometric phase analysis
In this paper, synthetic aperture radar (SAR) data from ENVISAT ASAR ascending, descending and ALOS PALSAR ascending orbits are collected to investigate the coseismic displacements of the Mw 6.4 earthquake occurred in Gaize, Tibet on January 9, 2008 and the Mw 5.9 aftershock on January 16, 2008. Two interferometric phase analysis techniques, i.e., D-InSAR and multi-aperture InSAR, are employed ...
متن کاملA New Perspective on Fault Geometry and Slip Distribution of the 2009 Dachaidan Mw 6.3 Earthquake from InSAR Observations
On 28 August 2009, the northern margin of the Qaidam basin in the Tibet Plateau was ruptured by an Mw 6.3 earthquake. This study utilizes the Envisat ASAR images from descending Track 319 and ascending Track 455 for capturing the coseismic deformation resulting from this event, indicating that the earthquake fault rupture does not reach to the earth's surface. We then propose a four-segmented f...
متن کاملCoseismic slip of the 2010 Mw 8.8 Great Maule, Chile, earthquake quantified by the inversion of GRACE observations
The 27 February 2010 Mw 8.8 Maule, Chile, earthquake ruptured over 500 km along a mature seismic gap between 341 S and 381 S—the Concepción–Constitución gap, where no large megathrust earthquakes had occurred since the 1835Mw 8.5 event. Notable discrepancies exist in slip distribution and moment magnitude estimated by various models inverted using traditional observations such as teleseismic ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016